(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(g(x), s(0), y) → f(y, y, g(x))
g(s(x)) → s(g(x))
g(0) → 0
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(g(x), s(0'), y) → f(y, y, g(x))
g(s(x)) → s(g(x))
g(0') → 0'
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
f(g(x), s(0'), y) → f(y, y, g(x))
g(s(x)) → s(g(x))
g(0') → 0'
Types:
f :: 0':s → 0':s → 0':s → f
g :: 0':s → 0':s
s :: 0':s → 0':s
0' :: 0':s
hole_f1_0 :: f
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f,
gThey will be analysed ascendingly in the following order:
g < f
(6) Obligation:
Innermost TRS:
Rules:
f(
g(
x),
s(
0'),
y) →
f(
y,
y,
g(
x))
g(
s(
x)) →
s(
g(
x))
g(
0') →
0'Types:
f :: 0':s → 0':s → 0':s → f
g :: 0':s → 0':s
s :: 0':s → 0':s
0' :: 0':s
hole_f1_0 :: f
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
g, f
They will be analysed ascendingly in the following order:
g < f
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
g(
gen_0':s3_0(
n5_0)) →
gen_0':s3_0(
n5_0), rt ∈ Ω(1 + n5
0)
Induction Base:
g(gen_0':s3_0(0)) →RΩ(1)
0'
Induction Step:
g(gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
s(g(gen_0':s3_0(n5_0))) →IH
s(gen_0':s3_0(c6_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
f(
g(
x),
s(
0'),
y) →
f(
y,
y,
g(
x))
g(
s(
x)) →
s(
g(
x))
g(
0') →
0'Types:
f :: 0':s → 0':s → 0':s → f
g :: 0':s → 0':s
s :: 0':s → 0':s
0' :: 0':s
hole_f1_0 :: f
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
g(gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
f
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(11) Obligation:
Innermost TRS:
Rules:
f(
g(
x),
s(
0'),
y) →
f(
y,
y,
g(
x))
g(
s(
x)) →
s(
g(
x))
g(
0') →
0'Types:
f :: 0':s → 0':s → 0':s → f
g :: 0':s → 0':s
s :: 0':s → 0':s
0' :: 0':s
hole_f1_0 :: f
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
g(gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(13) BOUNDS(n^1, INF)
(14) Obligation:
Innermost TRS:
Rules:
f(
g(
x),
s(
0'),
y) →
f(
y,
y,
g(
x))
g(
s(
x)) →
s(
g(
x))
g(
0') →
0'Types:
f :: 0':s → 0':s → 0':s → f
g :: 0':s → 0':s
s :: 0':s → 0':s
0' :: 0':s
hole_f1_0 :: f
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
g(gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(16) BOUNDS(n^1, INF)